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tion, the unicity of gradings on certain (co)modules is obtained.
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§1. INTRODUCTION

The classical Krull-Schmidt theorem, which was discovered in the 1920s, also known as the
Krull-Remak-Schmidt theorem, states that any two direct sum decompositions of a module (over
a ring) of finite length into indecomposable summands are isomorphic. It is one of the most
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basic results in module (or representation) theory.
Nowadays the unique decomposition property (for general mathematical objects) is always

called Krull-Schmidt property. An additive category C is said to be a Krull-Schmidt category
(see [1, p. 52]) provided that the endomorphism ring End(M) of any indecomposable object
M of C is a local ring. Such category assures the Krull-Schmidt property for each object.
Therefore in a Krull-Schmidt category, the classification problem for objects reduces to that for
indecomposable ones. Naturally it is always very important, and tempting mathematicians to
find the Krull-Schmidt property for a category.

The aim of this short note is to present the Krull-Schmidt property for three kinds of cate-
gories. As an application, the unicity of gradings on the indecomposables in certain categories
is obtained.

§2. THREE KINDS OF NEW KRULL-SCHMIDT CATEGORIES

We begin by introducing three kinds of categories.
(1) Let R be an arbitrary ring with unit. Denote the category of left R-modules by R-Mod.

A module M is said to be locally-finite provided that every cyclic submodule is of finite length.
A semi-simple module M is said to be multiplicity-bounded if there exists a positive integer n

such that the multiplicity of any simple appearing in the decomposition of M is bounded by n.

Consider the following two full subcategories of R-Mod

F (R) := {M | M is locally-finite with multiplicity-bounded socle},
FF (R) := {M | M is locally-finite with finite length socle}.

Clearly, FF (R) ⊆ F (R).
(2) Let k be a commutative artinian ring, A an arbitrary k-algebra. By A-Mod we denote

the category of left A-modules. An A-module M is said to be locally-finite over k if every cyclic
submodule is of finite length over k. Consider the following two full subcategories of A-Mod

F (A; k) := {M | M is locally-finite over k with multiplicity-bounded socle},
FF (A; k) := {M | M is locally-finite over k with socle being of finite length over k}.

Clearly FF (A; k) ⊆ F (A; k).
(3) Let k be any field, C an arbitrary k-coalgebra (see [2]). Denote by MC the category of

right C-comodules. Consider the following two full subcategories of MC

F (C) := {M | M has multiplicity-bounded socle},
FF (C) := {M | M has finite-dimensional socle}.

Clearly FF (C) ⊆ F (C).
Our main observation is
Theorem 2.1. The following three categories are Krull-Schmidt: (1) FF (R) for any com-

mutative ring R; (2) FF (A; k) for any algebra A over an arbitrary commutative artinian ring
k; (3) FF (C) for any coalgebra C over an arbitrary field k.
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We would like to leave two comments on Theorem 2.1: (i) Let R be a commutative ring, R-Art
the category of artinian modules. Then it is a good exercise to show that R-Art ⊆ FF (R). Thus
from the case (1) in Theorem 2.1 one deduces that R-Art is a Krull-Schmidt category, which
has been known in [3]. (ii) One could ask whether the category FF (R) is Krull-Schimidt for
non-commutative noetherian or local rings and what kind of full subcategories of R-Mod are
Krull-Schmidt for general R. As a matter of fact, these problems are far from known. The
readers are referred to [4–6] for related subjects, in particular results about the category of
artinian modules over local rings.

The proof of Theorem 2.1 relies heavily on the following result of Warfield (see [3]). We refer
it as Warfield’s Lemma, which generalizes the classical Fitting’s Lemma.

Lemma 2.1 (Warfield’s Lemma). Let R be a ring with unit, M an R-module, f : M −→
M an endomorphism. Assume that the following condition is fulfilled:

(CWL) there is a family of submodules Mi, i ∈ Λ, such that each Mi is of finite length,
f(Mi) ⊆ Mi and M =

∑
i∈Λ

Mi. Then there exists a decomposition of modules

M = N ⊕H

such that
(1) f(N) ⊆ N and the restriction f |N : N −→ N is locally-nilpotent;
(2) f(H) ⊆ H and the restriction f |H : H −→ H is an isomorphism.
Consequently, we have
(a) f is injective if and only if f is an isomorphism.
(b) if in addition M is indecomposable, then f or IdM − f is invertible.
Proof. Set

N =
∑

n≥1

Kerfn and H =
∑

i∈Λ

( ⋂

n≥1

fn(Mi)
)
.

Applying the classical Fitting’s Lemma to f |Mi : Mi −→ Mi, we get

Mi = (N ∩Mi)⊕
( ⋂

n≥1

fn(Mi)
)

and the restriction of f to
⋂

n≥1

fn(Mi) is an isomorphism, i ∈ Λ. Then it is not hard to see that

the result follows.
For the consequence (a), just note that N = 0; for (b), if f is not an isomorphism, then f

is locally-nilpotent, and thus IdM − f has the inverse given by
∑
n≥0

fn (which is well-defined by

the local-nilpotency).
We have the following useful corollary:
Corollary 2.1. (1) Let R be a commutative ring. Then for any indecomposable M ∈ F (R),

its endomorphism ring EndR(M) is local. (2) Let k be a commutative artinian ring, A a
k-algebra. Then for any indecomposable M ∈ F (A; k), its endomorphism ring EndA(M) is
local.
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Proof. (1) In view of Consequence (b) in Warfield’s Lemma, all we need to do is to verify the
condition (CWL). For each m ∈ M , consider the submodule Mm generated by {fn(m) | n ≥ 0}.
Note that

f(Mm) ⊆ Mm and M =
∑

m∈M

Mm.

We need only to show that each Mm is of finite length.
In fact, we can take the annihilator ideal I = Ann(Rm) and the factor ring R̄ = R/I. Thus we

can view Rm and Mm as R̄-modules. Since Rm is of finite length and it is a faithful R̄-module,
the map i : R̄ −→ Mm, r 7→ rm makes R̄ a submodule of Mm. Note that we have used the
commutativity of R. From this it follows that R̄ is a commutative artinian ring. Since the socle of
M is multiplicity-bounded, so is the socle of Mm. On the other hand, the ring R̄ has only finitely
many simples, thus the socle soc(Mm) of Mm is of finite length. Note that soc(Mm) ⊆ Mm

is essential. Thus we have an embedding Mm ⊆ E(soc(Mm)), where E(soc(Mm)) denotes the
injective hull in the category of R̄-modules. Since E(soc(Mm)) is of finite length, so is Mm.
This completes the proof.

(2) Similarly we also need to verify the condition (CWL) of Lemma 2.1. Let M ∈ F (A; k).
For each m ∈ M , consider the same Mm as above. We claim that Mm is of finite length. In
fact, it is of finite length even over k.

Similar to (1), take I = Ann(Am) and Ā = A/I. Then it is not hard to see that Ā is an
artinian algebra over k. Now applying the same argument as above, one can show the claim.

Proof of Theorem 2.1. Considering the length of the socles, we know that each object
in the three categories can be written as a finite direct sum of indecomposables. Now the
Krull-Schmidt properties of (1) and (2) follow immediately from Corollary 2.1.

To see (3), recall that the right C-comodules can be regarded as the left rational C∗-modules,
where C∗ is the dual algebra. So we have a natural full embedding Φ : MC −→ C∗-Mod.
Note that Φ(soc(M)) = soc(Φ(M)). Thus Φ identifies FF (C) (resp. F (C)) as a full subcate-
gory FF (C∗) (resp. F (C∗)), which is closed under direct summands. Thus the Krull-Schmidt
property of (3) follows from (2).

§3. AN APPLICATION: UNICITY OF GRADINGS

We will give an application of the obtained results to the unicity of gradings on certain
modules (see [7, 8]).

Let G be an arbitrary group. We write it multiplicatively and denote its unit by e. Let k be
a commutative artinian ring, A =

⊕
g∈G

Ag be a G-graded k-algebra. We consider the category

A-Gr of left graded A-modules and the following grading-forgetful functor

U : A-Gr −→ A-Mod.

A-modules lying in the essential image of U are called gradable modules.
Recall the degree-shift functors on A-Gr. Graded modules will be written as M =

⊕
g∈G

Mg

satisfying Ag′Mg ⊆ Mg′g. For each h ∈ G, we define a new graded module M(h) such that
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M(h)g = Mhg, g ∈ G. Thus we define the degree-shift endofunctor (h) on A-Gr. Observe that
U ◦ (h) = U for all h ∈ G. An A-module X is called uniquely-gradable if X is gradable and for
any two graded modules M, N with U(M) ' U(N) ' X there exists h ∈ G such that M ' N(h).
Let us remark that the question of whether a module is gradable or uniquely-gradable is quite
subtle in representation theory (see [9]).

Taking advantage of the observation in the previous section, we get the main result of this
section, which claims that in some certain Krull-Schmidt categories the indecomposable objects
are uniquely-gradable.

Theorem 3.1. Let k be a commutative artinian ring, A =
⊕
g∈G

Ag be a G-graded k-algebra.

Let X ∈ FF (A; k) be indecomposable. Assume that X is gradable. Then X is uniquely-
gradable.

Proof. Suppose that M =
⊕
g∈G

Mg and N =
⊕
g∈G

Ng are two graded A-modules such that

U(M) ' U(N) ' X. We need to show that M ' N(h) for some h ∈ G.
Assume that f : U(M) −→ U(N) is an isomorphism. For each h ∈ G, consider fh : M −→

N(h) such that for each g, the map fh|Mg
: Mg −→ Nhg is given by πhg ◦ f |Mg

, where πhg :
U(N) −→ Nhg is the canonical projection. It is direct to check that each fh is a morphism in
A-Gr, and for each m ∈ U(M), only finitely many fh(m) are non-zero and f(m) =

∑
h∈G

fh(m).

We claim that there are only finitely many h ∈ G such that U(fh) does not vanish on
soc(U(M)). If so, write the collection of these h’s by Λ. Consider f ′ :=

∑
h∈Λ

U(fh) : U(M) −→
U(N). Therefore the restrictions of f ′ and f to soc(U(M)) are the same. In particular,
f ′|soc(U(M)) is injective. Since soc(U(M)) ⊆ U(M) is essential, f ′ is injective. Note that
U(M) ' U(N) ' X. Thus by (a) in Warfield’s Lemma, f ′ is an isomorphism. By Theorem
2.1, EndA(X) is local. Hence f ′ =

∑
h∈Λ

U(fh) is an isomorphism, which implies that there exists

some h ∈ Λ such that U(fh) is an isomorphism. Therefore fh : M −→ N(h) is an isomorphism
in A-Gr. Thus with the claim the theorem follows.

To finish the proof, we need to show the claim. Consider the following set

IM := {h ∈ G | πh(soc(U(M))) 6= 0},

where πh : U(M) −→ Mh is the canonical projection. Since soc(U(M)) ' soc(X) is of finite
length over k, IM is a finite set. Similarly we have the finite set IN . Consider fh : M −→ N(h),
and note that U(fh) sends socle to socle. Consider certain homogeneous components. Since
U(fh) does not vanish on soc(U(M)), h necessarily lies in the following set

{h ∈ G | IMh ∩ IN 6= ∅},

which is certainly a finite set. Thus we have the claim.
Using similar argument, we have the following result.
Theorem 3.2. Let k be a field, C =

⊕
C∈G

Cg be a G-graded k-coalgebra. Let X ∈ FF (C) be

indecomposable. Assume that X is gradable. Then X is uniquely-gradable.
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